

Review of the Ontologies Mapping Project

Rama Balakrishnan for The Ontologies Mapping Project Team

Genentech, San Francisco

Allotrope Connect on 7th Oct 2019

Outline

- 1. Pistoia Alliance
- 2. Application of Ontologies and Mappings
- 3. Work delivered by the ONTOLOGIES project

About Pistoia Alliance

Mission

- A global not-for-profit alliance of life science companies, vendors, publishers and academic groups
 - Lowering the barriers to innovation in Life Sciences R & D
 - www.pistoiaalliance.org for more information

Business value

- Precompetitive research brings value through...
 - Building new standards, tools and services
 - Sharing best practice with industry peers
 - Evaluation of tools and services
 - And much more....

Project pipeline

Active Portfolio

- Ontologies Mapping ONTOLOGIES MAPPING
- FAIR Implementation FAIR Implementation Implementation for

Chemical Safety Library

Macromolecule Notation HELM

Controlled Substance Compliance

- User Experience in Life Sciences (UXLS) USER EXPERIENCE
- Advancing antibody drug discovery

- Unified chemistry data model
- Methods Database

Outline

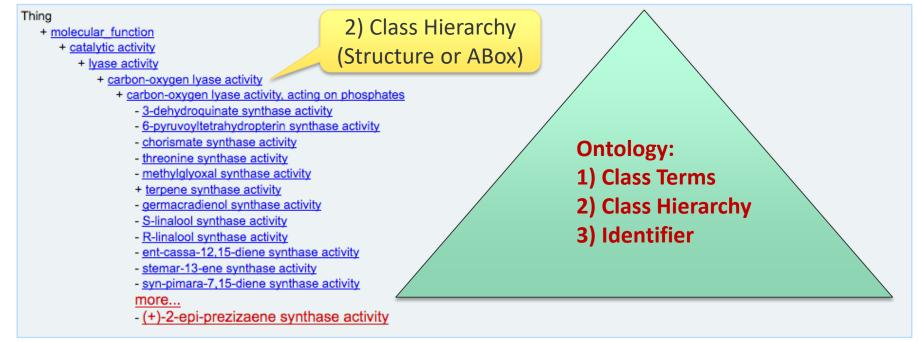
- 1. Pistoia Alliance
- 2. Application of Ontologies and Mappings
- 3. Work delivered by the ONTOLOGIES project

Ontology Features: Example from Gene Ontology

Class: (+)-2-epi-prezizaene synthase activity

1) Class Terms (Controlled Vocabulary or TBox)

Term IRI: http://purl.obolibrary.org/obo/GO_0102201

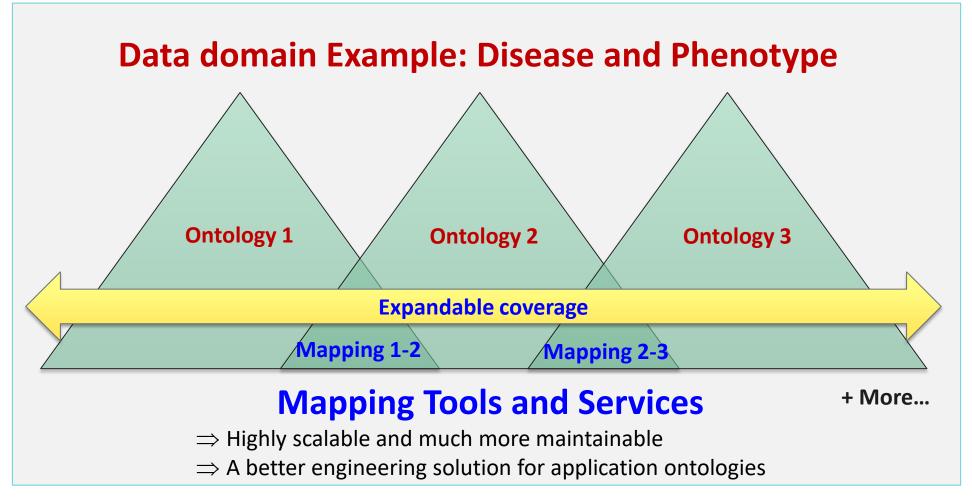

Definition: Catalysis of the reaction: 2-cis,6-trans-farnesyl diphosphate <=> (+)-2-epi-prezizaene + diphosphoric acid

Annotations

- database_cross_reference:MetaCyc:RXN-12117(= Ontology mapping)
- has obo namespace:molecular function
- id:GO:0102201

3) Identifier

Class Hierarchy



Source: http://www.ontobee.org

What is Ontologies Mapping?

Application of ontologies and mappings

- Pharma executives now consider data as a valuable corporate assets to enable digital transformation
 - Data integration throughout an enterprise e.gHorizontal Terminology Services

- Data Technology companies bridge the gap between "big data" and "innovative biological insight"
 - Data curation, valuation and governance
 - E.g. Eaglecore knowledge management platform at egge genomics

- Semantic analytics companies harness unstructured data
 - Data extraction and building knowledge with text mining

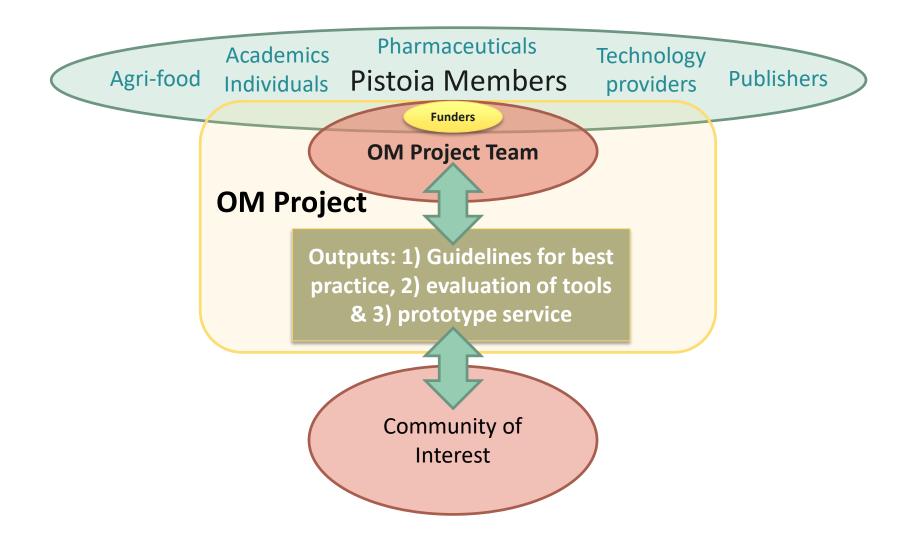
Ontologies and mappings bring structure to linked data stores

Outline

- 1. Pistoia Alliance
- 2. Application of Ontologies and Mappings
- 3. Work delivered by the ONTOLOGIES project

3. The Ontologies Mapping Challenge

- Ontologies can include hierarchical relationships; taxonomies; classifications and vocabularies
- They underpin numerous applications such as semantic search, linked data integration and text mining
- Ontologies are the "smart glue" of linked data to semantically enable knowledge management


BUT...

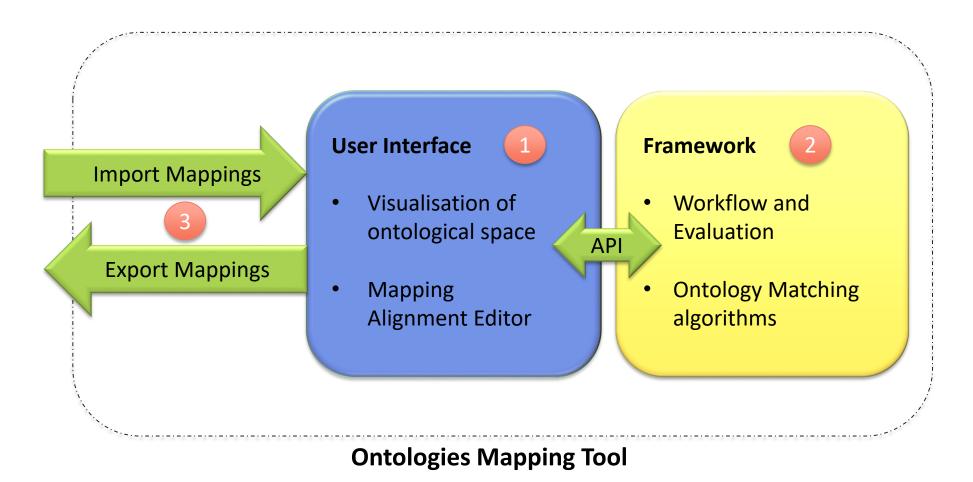
- Ontologies and their mappings are very costly to curate
- Many varying ontologies overlap in the same data domain e.g. disease and phenotype
- Need better practice, tools and services to manage and apply ontologies, including how they map to each other

Ontologies Mapping Project Overview

Guidelines for Selection of Ontologies

Ontology:	Human Disease ontology	Human Phenotype	Mammalian Phenotype	Clinical Terms SNOMED-CT
Guideline:	(DOID)	(HPO)	(MP)	
1. Format (Common)	Okay	Okay	Okay	Okay
2. URI (Identifier space)	Okay	Okay	Okay	Okay
3. Versioning	Okay	Okay	Okay	Okay
4. Documentation	Okay	Okay	None found	Okay
5. Users (Documented)	Okay	Okay	Okay	Okay
6. Authority (Locus of)	Okay	Okay	Okay	Okay
7. Maintenance	Okay	Okay	Okay	Okay
8. License (Open)	Okay	Okay	Okay	Restrictions
Seven more (Total = 15)	Okay	Okay	Okay	Okay (mostly!)

• These guidelines are accessible from a public wiki: https://pistoiaalliance.atlassian.net/wiki/display/PUB/Ontologies+Mapping+Resources


They align with the principles found at the OBO Foundry:- http://www.obofoundry.org

Ontologies Mapping Tool Overview

Detailed requirements are available on the OM project public wiki:https://pistoiaalliance.atlassian.net/wiki/display/PUB/Ontologies+Mapping+Resources

Tool Requirements & Evaluation of Capability

Functional Requirements		Academic 1	Academic 2	Academic 3	Commercial 2	Commercial 1	Academic 4	Commercial 3
1.1.1. Numerous view options		1	1	1	1	2	1	2
1.2.1. Improving Alignments		0	0	1	1	2	2	2
1.2.2. Matching corresponden	ce	0	1	1	2	0	2	2
1.2.3. Edit mapping suggestion	าร	0	0	2	2	2	2	2
1.2.4. Tracking of modification	ıs	0	1	0	1	2	1	2
1.2.5. Definition of context		0	0	0	1	0	0	0
2.1.1. Workflow		1	0	1	1	2	2	2
2.1.2. Evaluation metrics		1	0	2	0	2	2	1
2.2.1. Supports extensibility		0	1	1	1	0	2	2
3.1.1. Import equivalence map	pings	0	2	2	2	2	2	2
3.1.2. Import source ontologie	es	2	2	2	2	2	2	2
3.1.3. Use of external data sou	ırces	2	0	1	2	2	2	0
3.2.1. Export equivalence map	pings	1	2	2	2	2	2	2
3.2.2. Mapping metadata & do	ocs	1	1	0	0	2	2	1
None-Functional requirement	ts							
1. No License restrictions for u	ise	2	2	2	2	2	2	2
2. Current Availability & Maint	tenance	1	1	2	2	2	1	2
3. Standalone and web service	·	2	1	2	2	2	1	2
gMap, AML, OLS/OXO, YAM++		41%	44%	65%	71%	82%	82%	82%
ondeca, Infotech, fluidOps	Key:-	Yes = 2	Partial = 1	Expected = 0	No = 0			

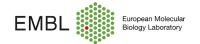
Detailed requirements and results are available on the OM project public wiki:-

https://pistoiaalliance.atlassian.net/wiki/display/PUB/Ontologies+Mapping+Resources

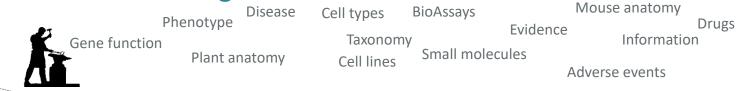
Ontology Alignment Evaluation Initiative

http://oaei.ontologymatching.org

- 2016 Campaign publication on phenotype track
 - "Matching disease and phenotype ontologies in the ontology alignment evaluation initiative" Harrow et al. Journal of Biomedical Semantics (2017) 8:55 https://doi.org/10.1186/s13326-017-0162-9
- Numerous tracks include one for <u>Disease and Phenotype</u>
 - Pistoia Alliance Ontologies Mapping project organise 2 mapping tasks:-
 - Human Phenotype (HP) Ontology vs. Mammalian Phenotype (MP) Ontology
 - Human Disease Ontology (DOID) vs. Orphanet & Rare Diseases Ontology (ORDO)
- Phenotype track repeated for 2017, 2018 and 2019 campaigns
 - ~50% of ~20 participating systems completed either or both tasks
 - Consistent top performing systems: AML and LogMap



Top performers for OAEI 2017 in phenotype track


OM algorithm	Track Task	Total	Precision Silver	Recall Silver 3	F-Score Silver 3	Sum F Scores
		Equivalence	3 Equiv	Equiv mappings	Equiv mappings	Silver 3 Equiv
		Mappings	mappings			mappings
AML	HP-MP	2029	0.822	0.951	0.882	3.791
AML	DOID-ORDO	4779	0.475	0.626	0.919	
AML	HP-MESH	5638	0.677	0.805	0.992	
AML	HP-OMIM	6681	0.624	0.768	0.998	
DiSMatch AR	HP-MP	2378	0.500	0.678	0.576	3.144
DiSMatch AR	DOID-ORDO	3130	0.539	0.603	0.684	
DiSMatch AR	HP-MESH	9161	0.385	0.542	0.917	
DiSMatch AR	HP-OMIM	7356	0.549	0.701	0.967	
DiSMatch TR	HP-MP	2331	0.517	0.687	0.590	3.183
DiSMatch TR	DOID-ORDO	3089	0.545	0.606	0.682	
DiSMatch TR	HP-MESH	9138	0.389	0.547	0.924	
DiSMatch TR	HP-OMIM	7680	0.537	0.696	0.988	
LogMap	HP-MP	2124	0.767	0.929	0.840	3.149
LogMap	DOID-ORDO	2396	0.903	0.890	0.876	
LogMap	HP-MESH	2291	0.869	0.649	0.518	
LogMap	HP-OMIM	7202	0.531	0.672	0.915	
LogMapBio	HP-MP	2204	0.749	0.941	0.834	3.291
LogMapBio	DOID-ORDO	2620	0.845	0.871	0.897	
LogMapBio	HP-MESH	2948	0.810	0.703	0.621	
LogMapBio	HP-OMIM	7725	0.508	0.659	0.939	
BioPortal LOOM	HP-MP	696	0.999	0.396	0.567	2.599
BioPortal LOOM	DOID-ORDO	1237	0.998	0.666	0.500	
BioPortal LOOM	HP-MESH	2466	0.994	0.776	0.637	
BioPortal LOOM	HP-OMIM	3768	0.992	0.941	0.895	

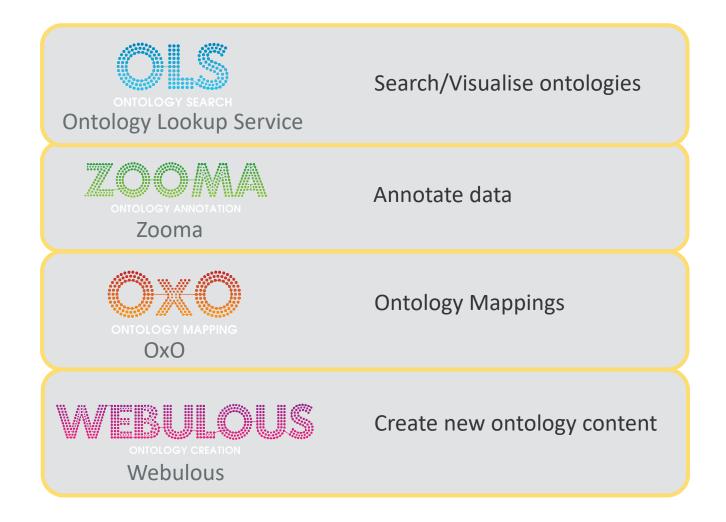
Source: This data is from the 3 vote consensus

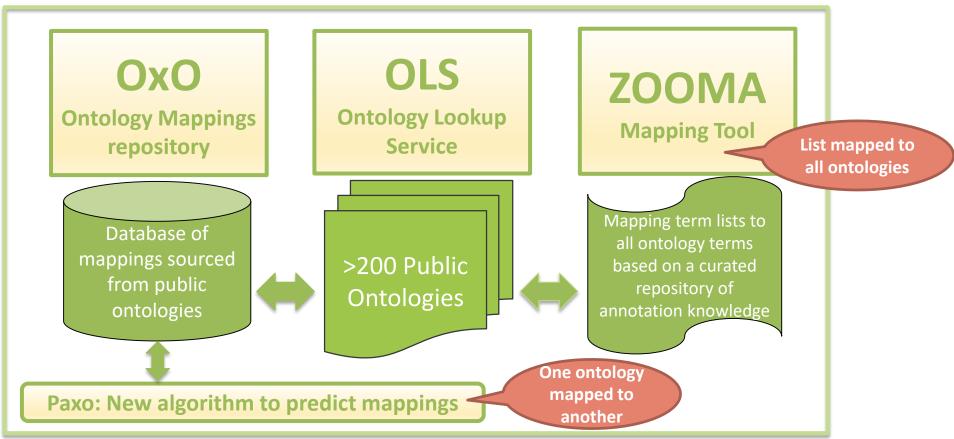
Ontologies at EMBL-EBI

Biomedical ontologies

Applications

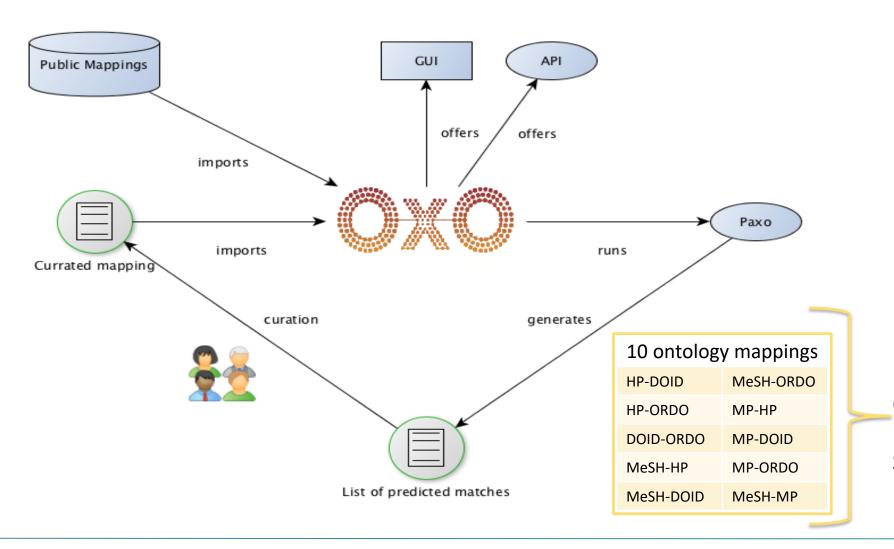
ENCODE




Building an Ontology Toolkit and Services

Source: Dr Simon Jupp (EMBL-EBI) Grants: ELIXIR-EXCELERATE 676559 & CORBEL 654248

How the Ontology Toolkit & Services fit together



- Collaborate with EMBL-EBI to build on their existing services
- Develop a new algorithm to predict mappings between any two ontologies

Relationship between OxO mapping repository and the new mapping algorithm, Paxo

Prototype Ontology Mapping Service

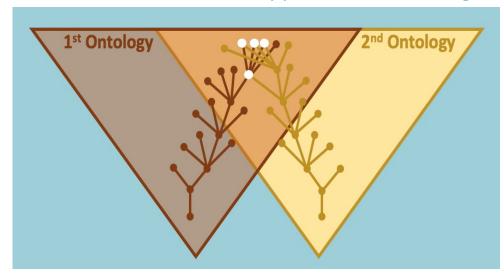
Optimisation of the predicted ontology mappings for unique matches: evaluation of quality

Mapping	Predicted	Predicted	Silver	Missed	Recall	Additional	Precision for
	matches total	in silver	standard	matches		matches	additions (N=60)
mesh_mp	796	280	282	2	99.29%	516	96.70%
mesh_doid	2173	1253	1265	12	99.05%	920	86.70%
mesh_hp	1400	724	734	10	98.64%	676	60.00%
ordo_mesh	970	632	664	32	95.18%	338	85.00%
hp_doid	1976	1104	1348	244	81.90%	872	33.30%
ordo_doid	2732	2044	2553	509	80.06%	688	66.70%
ordo_hp	1305	593	752	159	78.86%	712	63.30%
ordo_mp	550	138	185	47	74.59%	412	73.30%
mp_doid	1087	310	465	155	66.67%	777	33.00%
mp_hp	2600	1318	2185	867	60.32%	1282	53.30%

Silver standard is a consensus from a panel of ontology mapping algorithms from OAEI2017

Summary from 2015-2018 (phases 1-3)

- Guidelines to select ontologies prior to application
- Requirements vs. capabilities of commercial and academic mapping tools
- Phenotype track for OAEI challenge to determine top performing algorithms
- Progress towards a prototype Ontology Mapping Service


Significance

 Predicted Ontology Mappings from algorithms and validated by manual curation gives extended their coverage across a domain to support semantically-enabled applications

Update for 2019 (phase 4)

Guidelines, tools and services for application of ontologies and their mappings

PM: Ian Harrow

AstraZeneca abbvie

Current funders, partners & collaborators

Summary:

- Review of "OM for semantic" applications" published in Drug Discovery Today 2019
- Fifty four mappings delivered for biology, chemistry and biochemistry laboratory analytics domain
- A selection of mappings are being validated for recall and precision
- The mapping algorithm, Paxo can be applied to any public ontologies hosted by OLS at EMBL-EBI

Plans:

- Ideas being explored include
 - Crowd validation of predicted mappings stored in the OxO repository hosted by EMBL-EBI

National Cancer Institute Thesaurus (OBO edition)	A vocabulary for clinical care, translational and basic research, and public information and administrative activities. The NCIt OBO Edition project aims to increase integration of the NCIt with OBO Library ontologies. NCIt is a reference terminology that includes broad coverage of the cancer domain, including cancer related diseases, findings and abnormalities. NCIt OBO Edition releases should be considered experimental.	NCIT
Chemical Methods Ontology	The chemical methods ontology, describes methods used to collect data in chemical experiments, such as mass spectrometry and electron microscopy prepare and separate material for further analysis, such as sample ionisation, chromatography, and electrophoresis synthesise materials, such as epitaxy and continuous vapour deposition It also describes the instruments used in these experiments, such as mass spectrometers and chromatography columns. It is intended to be complementary to the Ontology for Biomedical Investigations (OBI).	СНМО
Medical Subject Headings	Medical Subject Headings (MeSH); National Library of Medicine; 2011	MESH
Ontology for Biomedical Investigations	The Ontology for Biomedical Investigations (OBI) is build in a collaborative, international effort and will serve as a resource for annotating biomedical investigations, including the study design, protocols and instrumentation used, the data generated and the types of analysis performed on the data. This ontology arose from the Functional Genomics Investigation Ontology (FuGO) and will contain both terms that are common to all biomedical investigations, including functional genomics investigations and those that are more domain specific.	OBI
Eagle-I Research Resource Ontology	An ontology of research resources such as instruments. protocols, reagents, animal models and biospecimens. It has been developed in the context of the eagle-i project (http://eagle-i.net/).	ERO
Mass Spectrometry Ontology	A structured controlled vocabulary for the annotation of experiments concerned with proteomics mass spectrometry. Developed by the HUPO Proteomics Standards Initiative (PSI).	MS

Ontologies at EMBL-EBI

Lab analytics Domain	Mapping	Paxo #uniques
Chemistry	AFO - NCIT	528
Chemistry	AFO - CHMO	239
Chemistry	AFO - MESH	149
Biochemistry	AFO - OBI	137
Biochemistry	AFO - ERO	96
Biochemistry	AFO - MS	66
Biochemistry	AFO - EFO	62
Biochemistry	AFO - BAO	61

